"PRIDE" SPECIAL SUBJECT BULLETIN - #7 - JANUARY 17, 2005 - PAGE 1 OF 5

TITLE: "THEORY P: THE PHILOSOPHY OF
MANAGING PROGRAMMERS"

by Tim Bryce
Managing Director
M. Bryce & Associates (MBA)
P.O. Box 1637
Palm Harbor, FL 34682-1637
United States
Tel: 727/786-4567
E-Mail: timb00l1@attglobal.net
WWW:  http://www.phmainstreet.com/mba/
Since 1971: "Software for the finest computer - the Mind"

"There are very few true artists in computer
programming, most are just house painters."
- Bryce's Law

Over the last 100 years, three distinctly different theo-
ries of management have emerged: Theories "X", "Y"
and "Z". All three are based on how management per-
ceives the work force in terms of their intelligence level,
motivation and attitude towards their job. Consequently,
this perception becomes the basis for formulating formal
policies and standard practices towards managing em-
ployees.

Although the delineation of "X", "Y" and "Z" represent
totally different management philosophies, few compa-
nies will formulate a style of management based on a
single theory. In reality, companies use various elements
from all three theories based on different situations, ev-
erything from autocratic control to casual democracy.

The concept of Theory P does not attempt to introduce
any new theories of management. Instead, it identifies
those elements from Theories "X", "Y" and "Z" pertain-
ing directly to the management of Programmers, hence
the Theory "P" designation. Theory P, therefore, repre-
sents a style of management for a particular job seg-
ment.

Theory P was created in order to capitalize on the hu-
man resources responsible for developing and maintain-
ing computer technology. In many cases, management
is faced with a paradox: how to manage the program-
ming department without irritating the programmers and
cause them to abandon the company, leaving corporate
systems prone to malfunction and in need of mainte-
nance. Programmers are hip to this and often use this
as leverage for job security. As such, corporate man-
agement is unsure how to properly manage this class of
(continued on page 2)

HOW DO WE MANAGE?

THEORY BACKGROUND CHARACTERISTICS
THEORY X Developed from time-and-motion stud- | 1. People have a natural aversion to
ies by Frederick W. Taylor (19th century | work.
Industrial Engineer). 2. People need to be coerced to achieve
goals.
3. Average person prefers to be directed,
wishes to avoid responsibility, has little
ambition, and wants security most.
THEORY Y Developed from experiments at the West- | 1. Work is as natural as play or rest.
ern Electric Hawthorne Works in Chicago | 2. People will achieve goals they deem
(1930's). Management giving special at- | important.
tention to people resulted in improved | 3. Commitment/reward relationship.
performance. 4. People accept & seek responsibility.
5. People can use imagination &
creativity.
6. More brain power is used.
THEORY Z Developed by William Ouchi (UCLA) | 1. Long term employment.
based on study of Japanese businesses | 2. Employees need freedom to grow.
during the 1970's. Observed higher pro- | 3. Group decision making.
ductivity because Japanese society en- | 4. Subordinates are whole people.
courages mutual trust and cooperation. | 5. Management is concerned with wel-
fare of subordinates.
6. Open communications.
7. Complete trust.
8. Cooperation vs. competition.




"PRIDE" SPECIAL SUBJECT BULLETIN - #7 - JANUARY 17, 2005 - PAGE 2 OF 5

THEORY P
(continued from page 1)

people and reluctantly abdicate control to someone more
technical.

The underlying premise of Theory P is: The more effec-
tively we manage the people who program the computer,
the better we can utilize the systems to support the infor-
mation needs of the business. One directly influences
the other. Just as the three theories of management are
used to describe the corporate culture, Theory P repre-
sents a gauge for how a company values information
and manages the resources needed to produce it. The
theory, therefore, is an inherent part of an Information
Resource Management (IRM) strategy.

The elements of Theory P were not derived form casual
observations. Rather, they are based on fifty years of
practical experience in the field, in a variety of indus-
tries. The principles contained herein were gained from
actual programming assignments, managing program-
mers in both large and small shops, and consulting with
literally hundreds of IT managers worldwide.

PERCEPTIONS

A particular management style is ultimately based on
how a manager perceives an employee. For example, if
a manager thinks a worker is lazy, the manager will spend
more time supervising the individual. In contrast, if a
manager has faith in the worker's judgement, the man-
ager will allow the employee to supervise himself. Per-
ceptions, therefore, plays a significant role in formulat-
ing a management style.

There are basically three perceptions management con-
siders:

1. The worker's intelligence level - Whether the indi-
vidual is considered capable of rising above their current
position, or has exceeded their level of competency (the
"in over their head" phenomenon). This is often gauged
by the number of mistakes the worker makes and their
ability to grasp new ideas.

2. The worker's motivation - Whether the worker is per-
ceived as a self-starter and aggressively tackles assign-
ments, or is lazy and needs to be coerced. This is pri-
marily measured by the amount of time needed to su-
pervise the individual.

3. The worker's attitude - Whether the worker is viewed
as stimulated by their job and enjoys their work, or is

adverse to work and apathetic to accomplishing anything.
This can be analyzed by the amount of time spent con-
guering job assignments (obsessed with meeting a dead-
line versus a "clock watcher" mentality), and the
employee's deportment as a professional (sharp and ar-
ticulate versus slovenly).

Whether these perceptions are real or not, management
will base their style of management on these variables.
Many people understand the power of image, and often
try to mislead others, particularly their superiors. Know-
ing these variables, many a worker has tried to convey a
false image to their employer. For example, an impec-
cable taste in dress may be a charade for incompetence.
Someone who spends an inordinate amount of time at
the office, yet produces nothing, is not an effective mea-
sure of an individual's productivity. In other words, just
because an employee is strong in one area, they may be
weak in another. Management will ultimately base their
opinions based on all three variables, not just one.

Before we consider how programmers fit within these
three variables, let's define what | mean by the job title
"Programmer." First, | deliberately avoided the term "Soft-
ware Engineer" because this would imply the use of a
scientific method to programming. Regardless of how
one feels about the profession, this is hardly the case.
Basically, the programmer's task is to convert human
understandable specifications into machine understand-
able instructions. From this perspective, a programmer
can best be characterized as a translator. Unfortunately,
such a delineation chafes people in this profession. Itis
not the intention of this paper to insult or demean pro-
grammers, but rather to put their position into proper per-
spective.

| also avoided the terms "Systems Engineer" or "Sys-
tems Analyst" since such positions are aimed at total
systems and not just the computer portions. A true "Sys-
tems Engineer/Analyst" studies business requirements,
defines and develops business processes to implement
the requirements, and specifies software requirements
for programmers to implement. Regrettably, there are
too few people performing this vital task and, conse-
quently, the responsibility defaults to the programmer who
is not necessarily equipped with the proper skills to per-
form the work. However, this is why the titles "Program-
mer/Analyst" or "Analyst/Programmer" are still dominant
these days.

There are significant differences between a "Systems

Engineer/Analyst" and a "Programmer." Whereas the

former is a generalist who speaks the language of the
(continued on page 3)



"PRIDE" SPECIAL SUBJECT BULLETIN - #7 - JANUARY 17, 2005 - PAGE 3 OF 5

THEORY P
(continued from page 2)

business, the latter is a detailist who must speak the lan-
guage of the computer. This stems from the fact com-
puters require precise instructions; the slightest syntacti-
cal or typographical error can cause it to fail, hence the
need for someone who understands the nuances of pro-
gramming languages. The two job functions require dis-
tinctly different skills and personalities. Combining the
two functions is highly dubious and doesn't do justice to
either.

INTELLIGENCE

Programmers tend to perceive themselves as free-spir-
ited intellectuals who possess the magic of technology.
Whereas the knowledge of the language is vital to per-
forming their job, programmers often use it to bamboozle
others and heighten their own self-importance. To out-
siders, programmers are viewed as a sort of inner-circle
of magicians who speak a rather cryptic language aimed
at impressing others, as well as themselves. Such ver-
bosity may actually mask some serious character flaws
in their personality. Speaking in a foreign language may
be amusing to a listener for awhile, but will inevitably
alienate people over time.

It is not unusual for programmers to have problems so-
cializing with others outside of their profession. Their
language and technical interests tend to make them
somewhat cliquish and the cause of peculiar sub-cultures
within companies. It should come as no surprise, there-
fore, that management perceives programmers as non-
conforming misfits who happen to hold the key to the
corporate technology (e.g., the "Black Box" syndrome).

In reality there is only a handful of true programming
geniuses in the field who are either independent contrac-
tors or are employed by computer hardware/software
firms. There are few, if any, true programming geniuses
in the average corporate shop. Regardless of the image
they wish to project, the average programmer does not
have a higher 1Q than any other worker with a college
degree. In fact, they may even be lower. Most exhibit
little imagination and require considerable instruction and
coaching in performing their job. When they have mas-
tered a particular programming task, the source code
becomes a part of their portfolio which they carry from
one job to the next. So much so, that copying or stealing
source code is actually the predominant mode of devel-
opment in most companies. Consequently, there is little
original source code being produced in today's software.

This copy/steal phenomenon also presents problems to
companies who need to safeguard intellectual property.
It is now too convenient for an employee to walk away
with source code a company paid dearly for. Further,
such action could seriously jeopardize a company's con-
tractual agreements with hardware/software vendors or
consultants.

To the programmer's credit, they usually possess a curi-
osity about technological developments. This must be
carefully nurtured by management. Suppressing infor-
mation may prevent the programmer from selecting a
suitable technical approach, too much information may
distract them from their job. An even balance must be
struck. Programmers need freedom to explore techno-
logical alternatives without spending an inordinate amount
of time in research.

There is also the problem that programmers tend to be
somewhat faddish. It is not uncommon for them to rec-
ommend a solution that is technically fashionable, not
necessarily what's practical. An elegant solution to the
wrong problem solves nothing. It is important for pro-
grammers to learn to justify their technical recommen-
dations from a business perspective. Failure to do so
will inevitably result in a costly decision.

Because of the rapid speed technology changes, an on-
going curriculum of training should be developed to
sharpen the programmer's skills. Further, a skills inven-
tory should be developed to monitor programmer profi-
ciency and to detect the need for additional training. The
obvious concern here, from an employer's point of view,
is that the programmer may leave the company after
learning new skills, thereby squandering the company's
investment in the person. Therefore, training should be
on a 50/50 basis, the company should provide an on-
going curriculum either after-hours or on the weekends.
It is important a company not spoon-feed an employee.
If programmers do not demonstrate personal initiative to
learn new subjects, the company should not waste time
and money trying to teach them (see section on "Motiva-
tion" below).

It is well known that programmers generally abhor orga-
nization and discipline. Their desks are often littered
with stacks of paper and other debris. The most com-
mon excuse is that "a cluttered desk is a sign of a brilliant
mind." Nothing could be further from the truth. With
little exception, sloppiness is a signh of mental laziness.
In fact, many programmers deliberately appear disorga-
nized to make it difficult to judge how they are progress-
(continued on page 4)



"PRIDE" SPECIAL SUBJECT BULLETIN - #7 - JANUARY 17, 2005 - PAGE 4 OF 5

THEORY P
(continued from page 3)

ing on their work effort and reveal inadequacies in work-
manship.

Mental laziness can also be found in planning and docu-
menting software. Instead of carefully thinking through
the logic of a program using graphics and text, most pro-
grammers prefer to dive into source code without much
thinking; a sort of "leap before you look" philosophy. In-
evitably, the only documentation describing the program
is the source code itself, which has been written accord-
ing to an individual's unique style and, of course, without
comments and annotation. As a result, the software is
difficult to modify and maintain. Eventually, the program
is discarded and has to be re-written.

Key Observations:

1. Programmers exhibit an average intelligence level,
no greater than any other professional with a college
degree. They exhibit an average imagination.

2. Perhaps more than any other profession, program-
mers try to impress and intimidate others with their tech-
nical jargon. Such language usually masks inadequa-
cies elsewhere.

3. Programmers are capable of learning new skills but
must demonstrate a willingness to learn.

4. Without basic organization and discipline, program-
mers will become mentally lazy.

Recommendations for Management:

1. Be leery of programmers that are pseudo-intellectual.
They are probably hiding something.

2. Improve communications within the programming staff
by developing a standard glossary of terms. This will
also be useful to outsiders who have to interface with
programmers.

3. Carefully scrutinize technical proposals. Make the
programmers justify it from a business perspective.

4. Adopt standards for documenting programs (e.g.,
graphics and/or text detailing the organization and logic
of the program).

5. Develop standard development practices emphasiz-
ing quality and program re-usability. Demanding preci-
sion in development will result in superior performance.

6. Implement a skills inventory to monitor the talents
and proficiencies of the programming staff. This is used
to determine the need for additional training, as well to
select the most suitable individual for a programming
assignment.

7. Promote a program of on-going education, such as a
training curriculum, the development of technical library,
participation in professional associations, and technical
certification programs.

8. Develop security measures to safeguard the
company's intellectual property.

9. Recognize outstanding achievement even for the
smallest of jobs.

10. Manage from the bottom-up. Delegate responsibility
and hold people accountable for their actions. Teach
employees to supervise themselves.

MOTIVATION

There are many motivational factors that influence people
in performing their work: financial compensation, job
security, dedication to their work, professional curiosity,
and sometimes sheer ego. Management must be aware
of these factors in order to properly stimulate people to
tackle their assignments. After all, people will only work
on those tasks they deem important. Unfortunately, not
all programming assignments are glamorous. The vast
majority of all corporate applications require some rather
simple logic (e.g., read a file, sort data, write a report). It
thereby becomes a challenge for management (and the
programmer) to make a seemingly mundane task ap-
pear interesting.

ATTITUDE

The typical programmer has many insecurities and often
laments he/she is being overworked, underpaid, and un-
appreciated. It should come as no small surprise that
programmers feel more like journeymen with more of an
allegiance to their profession as opposed to their com-
pany. As such, itis common for them to move from one
job to another at the drop of a hat. Because they do not
identify with their company, most are clock watchers and
will only tackle those assignments they deem necessary
and drag their heels on seemingly boring subjects.

Knowing this, management must effectively communi-
cate to the programmer:

(continued on page 5)



"PRIDE" SPECIAL SUBJECT BULLETIN - #7 - JANUARY 17, 2005 - PAGE 5 OF 5

THEORY P
(continued from page 4)

1. He/she is an important part of the corporation, but no
more than any other worker.

2. He/she is being adequately compensated.

3. Helshe is not being worked any harder than any other
worker.

4. The importance of their work.

Like any other worker, the programmer needs to know
they are leading a worthy life. Only with this sense of
value will they lead a mutually beneficial life with their
company.

CONCLUSION

Theory P is concerned with improving programmer pro-
ductivity by addressing the reality of working with pro-
grammers as opposed to implementing the latest tech-
nological panacea. The more we understand how pro-
grammers think, the better we can manage them. Let us
never forget they possess the same human frailties as
the rest of us do. Sure, some have inflated egos, but
most simply want a good basic standard of living and a
little recognition for their work. In turn, the programmer
must demonstrate responsibility and produce quality work.
Bottom-line, there is no need to handle them gingerly,
but as any other human resource.

Programmers fancy themselves as free-spirited individu-
als who resist discipline like a mustang resists the bit for
the first time. But it must be done. A little discipline,
organization and accountability can go a long way.

END

"PRIDE" Special Subject Bulletins can be found at the "PRIDE
Methodologies for IRM Discussion Group" at:
http://groups.yahoo.com/group/mbapride/

You are welcome to join this group if you are so inclined.

"PRIDE" is the registered trademark of M. Bryce & Associates
(MBA) and can be found on the Internet at:
http://www.phmainstreet.com/mba/pride/pride.htm

Copyright © MBA 2005. All rights reserved.




