
"PRIDE" SPECIAL SUBJECT BULLETIN - #14 - MARCH 7, 2005 - PAGE 1 OF 5

TITLE: "WHAT IS A GOOD PRORAM SPEC?"

by Tim Bryce
Managing Director

M. Bryce & Associates (MBA)
P.O. Box 1637

Palm Harbor, FL 34682-1637
United States

Tel: 727/786-4567
E-Mail: timb001@attglobal.net

WWW: http://www.phmainstreet.com/mba/
Since 1971: "Software for the finest computer - the Mind"

"Whenever you see a ratio of 25:75
analysts:programmers you will find systems analysis

being performed at the wrong time and
by the wrong person"

- Bryce's Law

INTRODUCTION

Since the industry is preoccupied with producing soft-
ware faster (and not necessarily better), let's stop and
consider how we typically approach programming and
allow me to put my spin on it. There are fundamentally
three aspects to any program development effort: defin-
ing the program's specifications, designing and writing
the program itself, and testing it. The software engineer-
ing gurus in the industry are primarily concerned with the
internal design of the program, but there is now a raft of
consultants trying to determine the best way to approach
the program externally. Why? Because there is now
many ways for producing software than just writing source
code using a common text editor; e.g., visual program-
ming aids/prototyping tools, workbenches, 4GL's, pro-
gram generators, etc. Such tools take the need for writ-
ing precise source code out of the hands of the program-
mers and allows them to concentrate on basic screen
and report layout. They are excellent tools for most pro-
gramming assignments, but they cannot do 100% of all
of the programming for all applications. We still require
professional software developers with an intimate knowl-
edge of programming languages and design techniques.
Regardless if we write a program by hand, or use some
sort of interpreter/generator, we still need to provide the
programmer with precise specifications in order to per-
form their work.

Seldom do companies make use of a uniform approach
for producing program specifications. It is not uncom-
mon for programmers to receive specs in obscure ways,
such as a memo from an end-user (the back of a cocktail
napkin is my personal favorite). Rarely are specifica-
tions given in a consistent manner that can be evaluated

for completeness. A standard approach would improve
productivity and communications within the programming
staff alone.

What should a good program spec include? Actually, its
not too difficult to figure out...

ELEMENTS OF A PROGRAM SPECIFICATION

Each program should be defined in terms of:

1. Input Descriptions (to collect data or request an
output) - be it implemented by a GUI, command line in-
terface, verbal, optical, or through some other screen
interface. All inputs should include:

a. Name, alternate ID, program label, description.
b. Defined layout and examples.
c. Input transaction specifications, including default

 values and editing rules for data to be collected.
d. Messages; e.g., data validation, and general

 processing.
e. Panels (for screens).
f. Relationship of inputs to outputs.

2. Output Descriptions (to retrieve data) - be it imple-
mented by a GUI, printed report, audio/video, or through
some other screen interface. All outputs should include:

a. Name, alternate ID, program label, description.
b. Defined layout and examples.
c. Panels (for screens), maps (for reports).
d. Messages; e.g., general processing and program

 specific information/warning/error messages.

3. Data Structure Descriptions (data bases, files,
records, and data elements). NOTE: Programmers
should NOT be in the business of designing data bases
as they will only do what is convenient for their applica-
tion, not others (thereby missing the opportunity for a
company to share and re-use data). Physical files should
be defined by Data Base Administrators.

a. All data structures should include: Name, alternate
 ID, program label, description. They should also
 include...

b. Data Bases - organization, key(s), labels, volume/
 size, backup requirements, internal structure.

c. Files (both primary and working) - organization,
 key(s), labels, volume/size, backup requirements,
 internal structure, file-to-file relationships.

d. Records - form, length, key(s), contents, record-to-
 record relationships.

e. Data Elements - class, justification, fill character,
 void state, mode, picture, label, size, precision,

(continued on page 2)

"PRIDE" SPECIAL SUBJECT BULLETIN - #14 - MARCH 7, 2005 - PAGE 2 OF 5
(continued from page 1)

 scale, validation rules. If generated data, rules for
 calculation. If group data, rules for assignment.

4. Program Description:
a. Name, alternate ID, program label, description.
b. Characteristics: Required processing speed,

 memory requirements.
c. Dependencies to other programs externally (e.g.,

 batch job stream).
d. Dependencies to modules internally (e.g., DLLs,

 subroutines, etc.)
e. Functions to be performed with Inputs, Outputs,

 and Data Structures (create/update/reference).
f. Special processing rules (logic for processing)
g. Command language required to execute the

 program (e.g., command files, JCL, etc.)
h. Physical environment where program will be

 executed.
i. Test Plan and how to assemble test data.
j. Method of implementation - programming

 language(s) to be used, design techniques to be
 observed, tools to be used.

In-house software engineering standards complements
any program specification (and should provide guidelines
for writing the specification). Such standards define "best
practices" for design and conventions to be observed
during programming. As an aside, the objective of soft-

ware engineering should be: Maintainability (easy to cor-
rect and update), Performance, Design Correctness
(proof), International support (to accommodate languages
and cultures), Integration (sharing and re-using code),
and Portability (platform independence).

Between the programming spec as listed above and a
good set of programming standards, it becomes rather
easy to implement any program, be it by hand or through
the use of a generator. As a matter of policy, specifica-
tions should be written under the assumption that a pro-
gram generator will be used. This forces us to be more
precise in our specifications.

OKAY, SO HOW DO WE GET THERE?

When it comes to assembling a program spec, I am of
the philosophy that "You eat elephants one spoonful at a
time." It is difficult to gather the specs for a single pro-
gram in one fell swoop. Plus, when we consider most
development projects today involve more than one pro-
gram, the problem is further complicated. For major
development efforts, I am of the opinion that "layers" of
documentation are required. For example, under
"PRIDE-ISEM, we view a system as a collection of sub-
systems (business processes), implemented by proce-
dures (administrative and computer), administrative pro-
cedures consist of operational steps (tasks), and com-
puter procedures consist of programs (which can be sub-

(continued on page 3)

"PRIDE" SPECIAL SUBJECT BULLETIN - #14 - MARCH 7, 2005 - PAGE 3 OF 5

(continued from page 2)

divided into modules if so desired).

Basically, "PRIDE" views a system as a product that can
be engineered and manufactured like any other product.
From this viewpoint, we can make use of other engi-
neering techniques, such as a top-down blueprinting ap-
proach to documentation where levels of abstraction
define the different levels in the system hierarchy. For
example, the Phase 1 Information Requirements con-
tained in the "System Study & Evaluation Manual" de-
fine what system(s) are needed (either new or existing
systems requiring modification); the Phase 2 "System
Design Manual" includes specifies the sub-systems; the
Phase 3 "Sub-System Design Manual" specifies the pro-
cedures in the business process; the Phase 4-I "Admin-
istrative Procedure Manual" specifies the operational
steps, and; the Phase 4-II "Computer Run Book" speci-
fies the programs. This blueprinting approach allows us
to progressively refine our specifications until we reach
the bottom of the product structure. In other words, it is
not necessary to define everything about an Input, Out-
put, File, or Data Element all at once, but rather to ini-
tially identify the need for them, then progressively re-
fine the details until we are ready to program.

This approach to documentation is sometimes referred
to as "step-wise refinement" whereby the design of a struc-
ture, such as a product or building, is refined over vari-
ous levels of abstraction. Only when we have completed
these architectural designs can the product move to
manufacturing/building. Imagine trying to build an auto-
mobile or skyscraper without such a technique. It would
be virtually impossible. Why should systems be any dif-
ferent? In order for this approach to work, you must ac-
cept the concepts: a system is a product; that there are
various levels of abstraction to it, and; there are stan-
dards for documenting each level. This is considerably
different than a "forms driven" approach to development;
e.g., fill out forms in a regimented sequence without any
thought in regard to the design of the system. Instead,
documentation should be a natural by-product of the de-
sign process.

This also makes a clear delineation in terms of "types" of
specifications; for example "information requirements"
and "programming specs" are miles apart in terms of
content and purpose. Whereas the former is a specifi-
cation regarding the business needs of the user, the

(continued on page 4)

"PRIDE" SPECIAL SUBJECT BULLETIN - #14 - MARCH 7, 2005 - PAGE 4 OF 5

(continued from page 3)

latter is a technical specification for the programmer to
implement.

For more information on "Defining Information Require-
ments," see "PRIDE" Special Subject Bulletin #4, Dec.
27, 2004

http://www.phmainstreet.com/mba/ss041227.pdf

This blueprinting approach also highlights the need for
basic systems work in the earlier phases of design, with
the programmers being the beneficiaries of more pre-
cise specifications (as opposed to vague concepts),
thereby simplifying their job. The Japanese use pyra-
mids to describe the differences in this focus between
the up-front systems work and the back-end program-
ming work (see below).

Both pyramids represent the scope of work in a project.
In the pyramid on the left, very little time is spent up-
front in system design. Consequently, more time is spent
by programmers "second-guessing" what the software
should be doing. Contrast this to the inverted pyramid
on the right where more time is spent in systems design,
thereby producing more detailed specifications and, as a
result, less time in programming.

CONCLUSION

So, what is a good program spec? Anything that elimi-
nates the guesswork for the programmer. Consider this:
if the up-front system design work was done right, pro-
gramming should be less than 15% of the entire devel-
opment process. Then why does it currently command
85% of our overall time (and financial resources)? Pri-
marily because we have shifted our focus and no longer
believe we are being productive unless we are program-
ming. After all, programming is perhaps the most visible
evidence of our work effort; system design is less tan-
gible.

Let me illustrate, back in 1976 I took an entry level CO-
BOL training course from IBM in Cincinnati. Our class
was divided into teams of three people and each team
was given problems to solve. When we received an as-
signment, the other two programmers in my team imme-
diately started to write code, key their entries (Yes, we
used keypunch equipment back then), then compiled the
program. Inevitably, there were errors and they would
go back-and-forth correcting errors until they finally got it
right. As for me, when I got an assignment, I would pull
out a plastic template and paper, and work out the logic
of the program before writing the code. I would then key
and compile, and would always complete the assignment

(continued on page 5)

"PRIDE" SPECIAL SUBJECT BULLETIN - #14 - MARCH 7, 2005 - PAGE 5 OF 5

(continued from page 4)

before my partners. Curiosity got the better of me and I
asked them, "Why do you do it that way?" They con-
tended this was how they were expected to work by their
superiors; that they weren't being productive unless they
were producing code. I countered that even though they
were faster at producing code, I was still beating them
every time, simply because I was thinking the problem
through.

The IBM rep who registered me for the class happened
to stop by and asked me if I was learning anything. I said
I was learning more about "programmers" than I was
about "programming." I am still learning about program-
mers, but I haven't noticed any significant changes in
their attitudes towards development since then. True,
we now have some great tools to expedite programming.
But if they are so good, why doesn't our backlog dimin-
ish? Why are we constantly in a maintenance mode?
Why can we never seem to complete our major applica-
tions on time? Why? Because we are no longer doing
the up-front work.

Just remember, it is always "Ready, Aim, Fire" - any other
sequence is simply counterproductive.

END

"PRIDE" Special Subject Bulletins can be found at the "PRIDE
Methodologies for IRM Discussion Group" at:

http://groups.yahoo.com/group/mbapride/

You are welcome to join this group if you are so inclined.

"PRIDE" is the registered trademark of M. Bryce & Associates
(MBA) and can be found on the Internet at:

http://www.phmainstreet.com/mba/pride/pride.htm

Copyright © MBA 2005. All rights reserved.

