
"PRIDE" SPECIAL SUBJECT BULLETIN - #37 AUGUST 15, 2005 - PAGE 1 OF 4

TITLE: “SYSTEMS: WHAT'S IN A WORD?”

by Tim Bryce
Managing Director

M. Bryce & Associates (MBA)
P.O. Box 1637

Palm Harbor, FL 34682-1637
United States

Tel: 727/786-4567
E-Mail: timb001@attglobal.net

WWW: http://www.phmainstreet.com/mba/
Since 1971: "Software for the finest computer - the Mind"

"Do not try to apply a band-aid when a tourniquet
 is required to stop the bleeding."

- Bryce's Law

INTRODUCTION

What's in a word? Plenty. One of the most troublesome
words used in our field is the word "System." What's so
troublesome? Doesn't everyone know what an Informa-
tion System is? Maybe the obvious isn't as obvious as
you might think.

A DEFINITION

An Information System is a prescribed set of processes
operating routinely to produce information for users to
fulfill business actions and decisions. Information Sys-
tems are used to pay employees, manage finances,
manufacture products, monitor and control production,
forecast trends, process customer orders, etc. These
are all excellent examples of how systems support infor-
mation requirements.

But what is a Computer System? What does it produce?
Information about computers? Or, are we merely trying
to describe how a system was implemented? I beg the
issue as to what is more important; the system or how it
was implemented? To many in the field, implementation
is more important than what is being implemented. Many
also believe the word "application" is synonymous with
the word "system." Think about it. What does the word
"application" really mean? It has come to mean the ap-
plication of the computer to some task within an overall
Information System. It could be just a small portion of
the system, perhaps just a single program.

CONFUSION IN THE FIELD

Recently we were involved with a large aerospace and
electronics conglomerate who was trying to develop a
complete business systems architecture. Obviously, this

requires a well thought out systems oriented methodol-
ogy and IRM Repository to define and maintain the infor-
mation resources to be built; see "Managing Design Com-
plexity" at:

"PRIDE" Special Subject Bulletin No. 27 - Feb 07, 2005
http://www.phmainstreet.com/mba/ss050207.pdf

Unfortunately, the company's I.T. organization had been
engrossed in the use of CASE tools and had come to the
erroneous conclusion that software engineering was no
different than systems engineering. Because of this, they
convinced management (perhaps "browbeat" is a better
adjective) that this programming approach, coupled with
a consultant conversant with the technology, will be able
to achieve their business systems goal. This is a classic
example of a tool oriented approach as opposed to a
management oriented approach to solving systems prob-
lems. What is more disturbing is this has become more
prevalent in today's corporate world.

Software is obviously the opposite of "hardware". Soft-
ware is machine processable instructions permitting the
hardware to perform specific functions. Software has
the same relationship to systems as robots have to a
manufacturing process. Even if the robot performs prop-
erly or a program executes correctly, it does not neces-
sarily mean you are producing anything worthwhile. What
is more important in this situation is whether the logical
system design is correct or not. We have always sub-
scribed to the following formulas:

Good Systems Design + Good Programming = Great Systems
Good Systems Design + Bad Programming = Good Systems
Bad Systems Design + Good Programming = Bad Systems
Bad Systems Design + Bad Programming = Chaos

The physical implementation can be less than perfect
and you can still produce good results; it may not be the
most elegant technologically, but it does solve the busi-
ness problem adequately. Vise versa is not true. As I
have described before, being "effective" (doing the right
things) is clearly more important than being efficient (do-
ing things right). Also remember that a system can be
implemented manually and, in many cases, manual
implementation of certain business processes is still a
cost effective alternative.

The intent of CASE tools is to build "software," not "sys-
tems." They are particularly well suited for organizing
programming specifications and producing the software.
CASE tools include diagramming aids, screen prototyping
aids, program generators (whether 3GL source code, a

(continued on page 2)

Copyright (c) MBA 2005. All rights reserved.

"PRIDE" SPECIAL SUBJECT BULLETIN - #37 AUGUST 15, 2005 - PAGE 2 OF 4

(continued from page 1)

4GL, or a report writer), and test/debugging aids. In
"PRIDE"-ISEM terms, these tools are used throughout
Phases 4-II, 5, and 6, the software engineering phases
of development. But make no mistake about it, they do
not alleviate the need for the important up-front systems
work. In fact, most CASE tools acknowledge and sup-
port the need for the proper front-end systems design.
However, when you're obsessed with a particular tech-
nology, as the aerospace and electronics company was,
you tend to lose objectivity and begin to believe the tool
can work miracles.

"Systems" and "software" are as dissimilar as "informa-
tion" and "data" (which represents another point of mass
confusion). It is like comparing apples with oranges. As
such, CASE tools are an "ineffective" way to perform
true systems work and a misapplication of the tool. We
have no problem with their use (in fact we applaud the
developments in this area) but we balk at their use where
they are not suited.

TELLTALE SIGNS

So how do you know if your I.T. department is overtly
software oriented? Look for these simple signs:

• THERE IS A 2:1 RATIO OF SOFTWARE ENGINEERS
TO SYSTEMS ENGINEERS

This is a classic sign. In fact, my ratio may be too mod-
est. It is not uncommon to find shops where there is a
3:1, 4:1, or 5:1 ratio; or, even worse, no systems people
at all.

What this means is that systems analysis is being per-
formed at the wrong time. Instead of receiving mean-
ingful design specs from a systems person, program-
mers must deduce requirements from cryptic notes (usu-
ally from e-mail messages, the back of envelopes or
cocktail napkins). In other words, they are forced to do
the systems design work backwards. Unfortunately, this
approach leads to disjointed software that doesn't inter-
face well with other programs.

This trend needs to be reversed. There should be at
least a 2:1 ratio for systems engineers to programmers.
The systems engineers should be viewed as the archi-
tects of the systems, laying out the blueprints for the car-
penters (programmers) to implement. Better system
designs (logical design) leads to better software specifi-
cations and physical design. Unfortunately, this type of
person has historically been sacrificed by companies over
the years in favor of hiring additional programmers. This

 leads us to the next sign...

• 85% OF THE TIME IN A DEVELOPMENT PROJECT
IS SPENT IN PROGRAMMING

This is an environment where an inordinate emphasis is
placed on software development (particularly coding and
testing). I.T. management, under pressure to produce,
forces a system through to programming before it is ready.
Further, both I.T. management AND corporate manage-
ment naively believe the development staff is not being
productive unless they are programming. Consequently,
the systems design work is sacrificed.

Naturally, the system, if it is ever finished, is fraught with
errors and inconsistences requiring extensive mainte-
nance. "Firefighting" thereby becomes the standard mode
of operation.

• STILL USING THE CLASSICAL "5 STEP" AP-
PROACH FOR SYSTEMS DEVELOPMENT

The same rudimentary approach taught to every student
in college when they are learning programming (not sys-
tems) is still in vogue today:

I. Feasibility Study/Requirements Definition
II. Analysis/Design
III. Programming
IV. Testing/Implementation
V. Maintenance

This basic approach, which originated in the 1960's, is
still prevalent today. It is often erroneously referred to as
the "System Life Cycle." As we should all know by now,
systems do not have a life cycle, only projects do. This
is another example of the sloppy thinking persevering in
our industry.

Admittedly, some form of methodology is better than
none. Organization of any sort is better than sheer chaos.
But when your methodology emphasizes software (as
this one does) then true systems design work will be im-
paired.

Obviously, these "signs" are related to each other. When-
ever you encounter them, you will probably find a com-
pany who has invested heavily in programming tools and
training in the hopes a better mousetrap will somehow
solve their problems. If a company has gotten too en-
grossed in their technology, they will inevitably lose sight
of some very basic management concepts and systems
principles.

(continued on page 3)

"PRIDE" SPECIAL SUBJECT BULLETIN - #37 AUGUST 15, 2005 - PAGE 3 OF 4

(continued on page 2)

IS THERE A WAY OUT?

Of course there is. But it requires a change of perspec-
tive and culture. First, you have to recognize that a prob-
lem exists. There is an old adage in psychology stating,
"You cannot treat a patient if he does not know he is
sick." If the corporate culture is such that no one per-
ceives a problem, particularly management, it is highly
unlikely anything will ever change. Only after a few sig-
nificant snafus does management typically perk up and
pay attention, such as:

• Excessive overhead due to an overstocked inventory.
• Production slowdowns due to insufficient supplies.
• Loss of customer data (particularly orders).
• Customer service is impaired and complaints

consequently arise.
• Billings or statements to customers fall behind in

delivery thus affecting cash-flow.
• Financial data is improperly calculated (such as

payroll, accounts receivables or accounts payables).
• Data bases are corrupted with erroneous or outdated

data making its validity highly suspect.
• Strategic systems are never brought in on time or

schedule.
• Automation is viewed as unreliable and the company

reverts back to tried and proven manual procedures.

To pacify angered executives, I.T. management has his-
torically applied superficial remedies, such as the acqui-
sition of additional tools which offer the promise of im-
proved results. As any surgeon will tell you, do not try to
apply a band-aid when a tourniquet is required to stop
the bleeding. If you are content with treating symptoms,
the more severe problems will probably be overlooked.

What is necessary is to step back and take a new per-
spective on the problem. This can be extremely difficult
for some people to do. It is not unusual for people to
lose their objectivity when they have become too inti-
mate with a problem, particularly technicians who tend
to recommend a solution that is technically elegant, but
not practical to implement. You need people who can
get up on the mountain and see the whole picture. This
is one reason why many Japanese companies use end-
users to assume the role of I.T. Director. With no com-
puter biases, they are able to bring pragmatic solutions
to their systems management problems.

WHAT'S IN A NAME?

Let's take it a step further; there is a lot of discussion

about the job titles used by today's development person-
nel. In the old days, we simply had "Systems Analysts"
and "Programmers." This eventually gave way to "Soft-
ware Engineer" which hints at the change of focus men-
tioned above. Today, there is a realization there should
be someone concerned with the overall architecture of
the corporate systems, hence the use of the title "Sys-
tems Architect" representing the successor to "Systems
Analyst." I don't have a problem with this off-hand but,
instead, opt to use the title "Systems Engineer" based
on our observations of the engineering/manufacturing
principles needed to design a system. Sorry, "Analyst/
Programmers" do not qualify as systems engineers; they
are still programmers in sheep's clothing.

The difference between the use of the title "Engineer"
and "Architect" is minuscule in comparison to the use of
"Systems" and "Software." Whereas the former is an
argument of semantics, there are significant differences
with the latter.

The skills required to perform "Systems Engineering" are
distinctly different than "Software Engineering." True,
both agree there are principles involved derived from
engineering, but each has a separate focus and orienta-
tion. Whereas the "Systems Engineer" requires a more
extroverted personality with people and business oriented
skills, the "Software Engineer" tends to be more inclined
towards an introverted personality with technical skills.
Interestingly, there are few people who can adequately
perform both job functions adequately. One person may
be good in one and lousy in the other. Frankly, sharpen-
ing the skills in one tends to lessen the skills of the other.

Most people entering the I.T. field usually start out on the
software side, then graduate to systems. Inevitably, they
still see things through the eyes of the programmer. Then,
as they are promoted to manager, they still have a pro-
gramming perspective. Universities are essentially no
different; their curriculum begins with software and ends
in systems. What kind of focus does the student have at
the end of their college career? That the only legitimate
problems worth solving are those that can be conquered
by technology, not by systems.

CONCLUSION

Over the last thirty years I have observed the subtle shift
of the industry from systems to software. For example:

• We no longer talk about "M.I.S." or "I.S." but, rather
"I.T."

(continued on page 4)

"PRIDE" SPECIAL SUBJECT BULLETIN - #37 AUGUST 15, 2005 - PAGE 4 OF 4

(continued from page 3)

• Publications such as "Infosystems" and the "EDP
Analyzer" have been superseded by computer
hardware/software rags.

• Industry associations have changed their focus, the
classic example being the "Data Processing
Management Association" (DPMA) renaming itself the
"Association of Information Technology Professionals."
Other groups, such as the Association of Systems
Management (ASM) have gone the way of the
dodo bird.

• The change in job titles as mentioned above.

Most of this can be attributed to sloppy terminology in
the industry and marketing glitz. Regardless, we now
have an industry with a focus on technology where we
try to implement the latest technological innovation to
our businesses (this is what I call the "solution looking
for a problem" phenomenon or "cart before the horse").
Instead, a systems perspective defines the problem, then
seeks a suitable and cost effective technical implemen-
tation. One drives the other. Which do you embrace?

Just remember, it is all a matter of perspective.

END

"PRIDE" Special Subject Bulletins can be found at:

http://www.phmainstreet.com/mba/mbass.htm

They are also available through the "PRIDE Methodolo-
gies for IRM Discussion Group" at:

http://groups.yahoo.com/group/mbapride/

You are welcome to join this group if you are so inclined.

"PRIDE" is the registered trademark of M. Bryce & Asso-
ciates (MBA) and can be found on the Internet at:

http://www.phmainstreet.com/mba/pride/pride.htm

Copyright © MBA 2005. All rights reserved.

