
"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 1 OF 10

TITLE: “A SHORT HISTORY OF SYSTEMS
DEVELOPMENT”

by Tim Bryce
Managing Director

M. Bryce & Associates (MBA)
P.O. Box 1637

Palm Harbor, FL 34682-1637
United States

Tel: 727/786-4567
E-Mail: timb001@phmainstreet.com

WWW: http://www.phmainstreet.com/mba/
Since 1971: "Software for the finest computer - the Mind"

"If they do not have an appreciation of whence we
came, I doubt they will have an appreciation of

where we should be going."
- Bryce's Law

INTRODUCTION

I always find it amusing when I tell a young person in this
industry that I worked with punch cards and plastic tem-
plates years ago. Its kind of the same dumbfounded
look I get from my kids when I tell them we used to watch
black and white television with three channels, no re-
mote control, and station signoffs at midnight. It has
been my observation that our younger workers do not
have a sense of history; this is particularly apparent in
the systems world. If they do not have an appreciation
of whence we came, I doubt they will have an apprecia-
tion of where we should be going. Consequently, I have
assembled the following chronology of events in the hopes
this will provide some insight as to how the systems in-
dustry has evolved to its current state.

I'm sure I could turn this into a lengthy dissertation but,
instead, I will try to be brief and to the point. Further, the
following will have little concern for academic develop-
ments but rather how systems have been implemented
in practice in the corporate world.

PRE-1950'S - "SYSTEMS AND PROCEDURES"

Perhaps the biggest revelation to our younger readers
regarding this period will be that there was any form of
systems prior to the advent of the computer. In fact,
"Systems and Procedures" Departments predated the
computer by several years. Such departments would be
concerned with the design of major business processes
using "work measurement" and "work simplification" tech-
niques as derived from Industrial Engineering. Such pro-
cesses were carefully designed using grid diagrams and

flowcharts. There was great precision in the design of
forms to record data, filing systems to manage paper-
work, and the use of summary reports to act as control
points in systems. For example, spreadsheets have been
extensively used for many years prior to the introduction
of Lotus 1-2-3 or MS Excel. There was also consider-
able attention given to human behavior during the busi-
ness process (the precursor to "ergonomics").

Systems were initially implemented by paper and pencil
using ledgers, journals (logs), indexes, and spreadsheets.
We have always had some interesting filing systems,
everything from cards and folders, to storage cabinets.

Perhaps the earliest mechanical device was the ancient
abacus used for simple math (which is still used even to
this day). The late 1800's saw the advent of cash
registers and adding machines as popularized by such
companies as NCR in Dayton, Ohio under John Patterson
who also introduced sweeping changes in terms of dress
and business conduct. This was adopted by Thomas
Watson, Sr. who worked for many years at NCR and
carried forward these practices to IBM and the rest of
the corporate world. Also, Burroughs was a major player
in the early adding machine industry.

The first typewriters were also introduced in the late
1800's which had a tremendous effect on correspondence
and order processing. This was led primarily by
Remington Arms (later to become Remington Rand).

In the early 1900's, tabulating equipment was introduced
to support such things as census counting. This was
then widely adopted by corporate America. Occasionally
you will run into old-timers who can describe how they
could program such machines using plug boards. Punch
card sorters were added as an adjunct to tabulating
equipment.

As a footnote, most of what IBM's Watson learned about
business was from his early days at NCR. However, he
had a falling out with Patterson who fired him. As a
small bit of trivia, after Watson died, he was buried in
Dayton on a hilltop overlooking NCR headquarters, the
company he couldn't conquer.

During World War II, both the U.S. military and industrial
complex relied heavily on manually implemented sys-
tems. We did it so well that many people, including the
Japanese, contend it gave the Allies a competitive edge
during the war.

The lesson here, therefore, is that manually implemented
(continued on page 2)

HP_Administrator
Copyright © 2006 MBA. All rights reserved.

"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 2 OF 10

(continued from page 1)

systems have been with us long before the computer
and are still with us today. To give you a sense of history
in this regard, consider one of our more popular Bryce's
Laws:

"The first on-line, real-time, interactive, data base sys-
tem was double-entry bookkeeping which was developed
by the merchants of Venice in 1200 A.D."

One major development in this area was the work of Leslie
"Les" Matthies, the legendary Dean of Systems. Les
graduated from the University of California at Berkeley
during the Depression with a degree in Journalism. Be-
ing a writer, he tried his hand at writing Broadway plays.
But work was hard to come by during this period and
when World War II broke out, Les was recruited by an
aircraft manufacturer in the midwest to systematize the
production of aircraft. Relying on his experience as a
writer, he devised the "Playscript" technique for writing
procedures. Basically, Les wrote a procedure like a script
to a play; there was a section to identify the procedure
along with its purpose; a "Setup" section to identify the
forms and files to be used during it; and an "Operations/
Instructions" section which described the "actors" to per-
form the tasks using verbs and nouns to properly state
each operation. He even went so far as to devise rules
for writing "If" statements.

For details on "Playscript," see "PRIDE" Special Subject
Bulletin No. 38 - "The Language of Systems" - Aug. 22,
2005
http://www.phmainstreet.com/mba/ss050822.pdf

"Playscript" became a powerful procedure writing lan-
guage and was used extensively throughout the world.
It is still an excellent way to write procedures today.
Ironically, Les did not know what a profound effect his
technique would have later on in the development of com-
puter programs.

1950'S - INTRODUCTION OF THE COMPUTER

Yes, I am aware that the ENIAC was developed for the
military at the end of World War II. More importantly, the
UNIVAC I (UNIVversal Automatic Computer) was intro-
duced in 1951 by J. Presper Eckert and John Mauchly.
The UNIVAC I was a mammoth machine that was origi-
nally developed for the U.S. Bureau of the Census. Cor-
porate America took notice of the computer and compa-
nies such as DuPont in Wilmington, Delaware began to
lineup to experiment with it for commercial purposes.
The Remington Rand Corporation sponsored the project,
but the company's focus and name eventually changed

to "UNIVAC" (today it is referred to as "UNISYS," repre-
senting a merger of UNIVAC with Burroughs).

The UNIVAC I offered a sophistication unmatched by
other manufacturers, most notably IBM's Mach I tabulat-
ing equipment. This caused IBM to invent the 701 and
its 700 series. Other manufacturers quickly joined the
fray and computing began to proliferate. Although
UNIVAC was the pioneer in this regard, they quickly lost
market share due to the marketing muscle of IBM. For
quite some time the industry was referred to as "IBM &
the BUNCH" (Burroughs, UNIVAC, NCR, CDC, and
Honeywell).

Programming the early machines was difficult as it was
performed in a seemingly cryptic Machine Language (the
first generation language). This eventually gave way to
the Assembly Language (the second generation lan-
guage) which was easier to read and understand. Re-
gardless, many of the utilities we take for granted today
(e.g., sorts and merges) simply were not available and
had to be developed. In other words, programming was
a laborious task during this period.

Recognizing both the limitations and potential of the com-
puter, the 1950's represented the age of experimenta-
tion for corporate America. Here, the emphasis was not
on implementing major systems through the computer,
but rather to develop an assortment of programs to test
the machine as a viable product. As such, programmers
were considered odd characters who maintained "the
black box," and were not yet considered a part of the
mainstream of systems development. The "Systems and
Procedures Departments" still represented the lion's share
of systems work in corporate America, with an occasional
foray to investigate the use of the computer.

The computer people were segregated into "computer
departments" (later to be known as "EDP" or "Data Pro-
cessing" departments).

1960's - MANAGEMENT INFORMATION SYSTEMS

Competition between computer manufacturers heated up
during this decade, resulting in improvements in speed,
capacity, and capabilities. Of importance here was the
introduction of the much touted IBM 360 (the number
was selected to denote it was a comprehensive solution
- 360 degrees). Other computer vendors offered prod-
ucts with comparable performance, if not more so, but
the IBM 360 was widely adopted by corporate America.

The programming of computers was still a difficult task
and, consequentially, Procedural Languages were intro-

(continued on page 3)

"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 3 OF 10

(continued from page 2)

duced (the third generation languages). In actuality, these
languages got their start in the late 1950's, but the prolif-
eration of computers in the 1960's triggered the adoption
of procedural languages such as COBOL, FORTRAN,
and PL/1. Interestingly, these languages were patterned
after Les Matthies' "Playscript" technique which made
active use of verbs, nouns, and "if" statements.

The intent of the Procedural Languages was twofold: to
simplify programming by using more English-like lan-
guages, and; to create universal languages that would
cross hardware boundaries. The first goal was achieved,
the second was not. If the languages were truly univer-
sal, it would mean that software would be portable across
all hardware configurations. Manufacturers saw this as
a threat; making software truly portable made the selec-
tion of hardware irrelevant and, conceivably, customers
could migrate away from computer vendors. In order to
avoid this, small nuances were introduced to the compil-
ers for the Procedural Languages thereby negating the
concept of portability. This issue would be ignored for
many years until the advent of the Java programming
language.

The 1960's also saw the introduction of the Data Base
Management System (DBMS). Such products were origi-
nally designed as file access methods for Bill of Materi-
als Processing (BOMP) as used in manufacturing. The
"DBMS" designation actually came afterwards. Early
pioneers in this area included Charlie Bachman of G.E.
with his Integrated Data Store (IDS) which primarily op-
erated under Honeywell GCOS configurations; Tom
Richley of Cincom Systems developed TOTAL for Cham-
pion Paper, and; IBM's BOMP and DBOMP products. In
1969, IBM introduced IMS which became their flagship
DBMS product for several years.

With the exception of IMS, the early DBMS offerings were
based on a network model which performed chain-pro-
cessing. IMS, on the other hand, was a hierarchical model
involving tree-processing.

Realizing that programming and data access was be-
coming easier and computer performance being en-
hanced, companies now wanted to capitalize on this tech-
nology. As a result, corporate America embarked on the
era of "Management Information Systems" (MIS) which
were large systems aimed at automating business pro-
cesses across the enterprise. These were major system
development efforts that challenged both management
and technical expertise.

It was the MIS that married "Systems and Procedures"

departments with computing/EDP departments and trans-
formed the combined organization into the "MIS" depart-
ment. This was a major milestone in the history of sys-
tems. The systems people had to learn about computer
technology and the programmers had to learn about busi-
ness systems.

Recognizing that common data elements were used to
produce the various reports produced from an MIS, it
started to become obvious that data should be shared
and reused in order to eliminate redundancy, and to pro-
mote system integration and consistent data results. Con-
sequently, Data Management (DM) organizations were
started, the first being the Quaker Oats Company in Chi-
cago, Illinois in 1965. The original DM organizations were
patterned after Inventory Control Departments where the
various components were uniquely identified, shared and
cross-referenced. To assist in this regard, such organi-
zations made use of the emerging DBMS technology.
Unfortunately, many DM organizations lost sight of their
original charter and, instead, became obsessed with the
DBMS. Data as used and maintained outside of the com-
puter was erroneously considered irrelevant. Even worse,
the DBMS was used as nothing more than an elegant
access method by programmers. Consequently, data
redundancy plagued systems almost immediately and
the opportunity to share and reuse data was lost. This is
a serious problem that persists in companies to this day.

1970's - AWAKENING

Although the MIS movement was noble and ambitious in
intent, it floundered due to the size and complexity of the
task at hand. Many MIS projects suffered from false starts
and botched implementations. This resulted in a period
where a series of new methods, tools and techniques
were introduced to reign in these huge development ef-
forts.

The first was the introduction of the "methodology" which
provided a road map or handbook on how to success-
fully implement systems development projects. This
was pioneered by MBA with its "PRIDE" methodology in
1971. Although the forte of "PRIDE" was how to build
systems, it was initially used for nothing more than docu-
mentation and as a means to manage projects. Follow-
ing "PRIDE" was John Toellner's Spectrum I methodol-
ogy and SDM/70 from Atlantic Software. Several CPA
based methodologies followed thereafter.

Also during this time, mainframe based Project Manage-
ment Systems were coming into vogue including Nichols
N5500, PAC from International Systems, and PC/70 from
Atlantic Software.

(continued on page 4)

"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 4 OF 10

(continued from page 3)

The early methodologies and Project Management Sys-
tems give evidence of the orientation of systems depart-
ments of that time: a heavy emphasis on Project Man-
agement. Unfortunately, it was a fallacy that Project
Management was the problem; instead people simply
didn't know how to design and build systems in a uniform
manner. As companies eventually learned, Project Man-
agement is useless without a clear road map for how to
build something.

In the mid-to-late 1970's several papers and books were
published on how to productively design software thus
marking the beginning of the "Structured Programming"
movement. This was a large body of work that included
such programming luminaries as Barry Boehm, Frederick
P. Brooks, Larry Constantine, Tom DeMarco, Edsger
Dijkstra, Chris Gane, Michael A. Jackson, Donald E.
Knuth, Glenford J. Myers , Trish Sarson, Jean Domin-
ique Warnier, Generald M. Weinberg, Ed Yourdon, as
well as many others. Although their techniques were
found useful for developing software, it led to confusion
in the field differentiating between systems and software.
To many, they were synonymous. In reality, they are not.
Software is subordinate to systems, but the growing
emphasis on programming was causing a change in per-
spective.

The only way systems communicate internally or exter-
nally to other systems is through shared data; it is the
cohesive bond that holds systems (and software) together.
This resulted in the introduction of Data Dictionary tech-
nology. Again, this was pioneered by MBA with its
"PRIDE" methodology (which included a manually imple-
mented Data Dictionary) and later with its "PRIDE"-LOGIK
product in 1974. This was followed by Synergetics' Data
Catalogue, Data Manager from Management Software
Products (MSP), and Lexicon by Arthur Andersen & Com-
pany.

The intent of the Data Dictionaries was to uniquely iden-
tify and track where data was used in a company's sys-
tems. They included features for maintaining documen-
tation, impact analysis (to allow the studying of a pro-
posed change), and redundancy checks. "PRIDE"-LOGIK
had the added nuance of cataloging all of the systems
components, thereby making it an invaluable aid for de-
sign and documentation purposes.

The Data Dictionary was also a valuable tool for control-
ling DBMS products and, as such, several adjunct prod-
ucts were introduced, such as UCC-10, DB/DC Data Dic-
tionary, and the Integrated Data Dictionary (IDD) from
Cullinet. Unlike the other general purpose Data Dictio-

naries, these products were limited to the confines of the
DBMS and didn't effectively track data outside of their
scope.

DBMS packages proliferated during this period with many
new products being introduced including ADABAS, Im-
age, Model 204, and IDMS from Cullinet (which was origi-
nally produced at BF Goodrich). All were based on the
network-model for file access which was finally adopted
as an industry standard (CODASYl).

There were a few other notable innovations introduced,
including IBM's Business Systems Planning (BSP) which
attempted to devise a plan for the types of systems a
company needed to operate. Several other comparable
offerings were introduced shortly thereafter. Interestingly,
many companies invested heavily in developing such
systems plans, yet very few actually implemented them.

Program Generators were also introduced during this
period. This included report writers that could interpret
data and became a natural part of the repertoire of DBMS
products. It also included products that could generate
program source code (COBOL predominantly) from speci-
fications. This included such products as System-80
(Phoenix Systems), GENASYS (Generation Sciences),
and JASPOL (J-Sys of Japan), to mention but a few.

MBA also introduced a generator of its own in 1979 - a
Systems generator initially named ADF (Automated De-
sign Facility) which could automatically design whole
systems, complete with an integrated data base. Based
on information requirements submitted by a Systems Ana-
lyst, ADF interacted with the "PRIDE"-LOGIK Data Dic-
tionary to design new systems and, where appropriate
modify existing systems. Because of its link to LOGIK,
ADF emphasized the need to share and reuse informa-
tion resources. Not only was it useful as a design tool
but it was a convenient tool for documenting existing
systems. The only drawback to ADF was that the mindset
of the industry was shifting from systems to software.
Consequently, program generators captured the imagi-
nation of the industry as opposed to ADF.

The increase in computer horsepower, coupled with new
programming tools and techniques, caused a shift in
perspective in MIS organizations. Now, such departments
became dominated by programmers, not systems people.
It was here that the job titles "Systems Analyst" and "Pro-
grammer" were married to form a new title of "Program-
mer/Analyst" with the emphasis being on programming
and not on front-end systems design. Many managers
falsely believed that developers were not being produc-
tive unless they were programming. Instead of "Ready,

(continued on page 5)

"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 5 OF 10

(continued from page 4)

Aim, Fire," the trend became "Fire, Aim, Ready."

Data Management organizations floundered during this
period with the exception of Data Base Administrators
(DBA's) who were considered the handmaidens of the
DBMS.

The proliferation of software during this decade was so
great that it gave rise to the packaged software industry.
This went far beyond computer utilities and programming
tools. It included whole systems for banking, insurance
and manufacturing. As a result, companies were inclined
to purchase and install these systems as opposed to re-
inventing the wheel. Among their drawbacks though was
that they normally required tailoring to satisfy the
customer's needs which represented modification to the
program source code. Further, the customer's data re-
quirements had to be considered to assure there were
no conflicts in how the customer used and assigned data.
After the package had been installed, the customer was
faced with the ongoing problem of modifying and enhanc-
ing the system to suit their ever-changing needs.

1980's - THE TOOL-ORIENTED APPROACH

As big iron grew during the 1960's and 1970's, computer
manufacturers identified the need for smaller computers
to be used by small to medium-sized businesses. In the
1970's, people were skeptical of their usefulness but by
the 1980's their power and sophistication caused the
"mini" computer to gain in popularity as either a general
purpose business machine or dedicated to a specific sys-
tem. Among the most popular of the "mini" computers
were:

• IBM's System 36/38 series (which led to the AS/400)
• DEC PDP Series (which gave way to the DEC VAX/

VMS)
• Hewlett-Packard's HP-3000 series with MPE
• Data General Eclipse series with AOS
• PRIME

The competition was fierce in the "mini" market which
resulted in considerable product improvements and bet-
ter value to the customer. Instrumental to the success of
the mini was the adoption of UNIX as developed by Bell
Labs, a powerful multi-user, multitasking operating sys-
tem that eventually was adopted by most, if not all, mini
manufacturers.

But the major development in computer hardware was
not the mainframe, nor the mini; it was the "micro" com-
puter which was first popularized by Apple in the late

1970's. IBM countered with the its Personal Computer
(PC) in the early 1980's. At first, the micro was consid-
ered nothing more than a curiosity but it quickly gained
in popularity due to its inexpensive cost, and a variety of
"apps" for word processing, spreadsheets, graphics, and
desktop publishing. This caught on like wildfire as mi-
cros spread through corporate desktops like the plague.

By the mid-1980's the "micro" (most notably the PC) had
gained in power and sophistication. So much so, that a
series of graphical based products were used for soft-
ware development in support of the Structured Program-
ming movement of the 1970's. Such tools were dubbed
"CASE" (Computer Aided Software Engineering) which
allowed developers to draw their favorite software dia-
gramming technique without pencil and paper. Early
CASE pioneers included Index Technology,
Knowledgeware, Visible Systems, Texas Instruments, and
Nastec, as well as many others. CASE tools took the
industry by storm with just about every MIS organization
purchasing a copy either for experimental use or for full
application development. As popular as the tools were
initially, there is little evidence they produced any major
systems but, instead, helped in the design of a single
program.

Recognizing the potential of the various CASE tools, IBM
in the late 1980's devised an integrated development
environment that included IBM's products as well as third
parties, and entitled it "AD/Cycle." However, IBM quickly
ran into problems with the third party vendors in terms of
agreeing on technical standards that would enable an
integrated environment. Consequently, the product ran
aground not long after it was launched. In fact, the pros-
perity of the CASE market was short-lived as customers

failed to realize the savings and productivity benefits as
touted by the vendors. By the early 1990's, the CASE
market was in sharp decline.

Instead, companies turned to Programmer Workbenches
which included an all-in-one set of basic tools for pro-
gramming, such as editing, testing, and debugging.
Microsoft and Micro Focus did particularly well in offer-
ing such products.

Data Base Management Systems also took a noticeable
turn in the 1980's with the advent of "relational" products
involving tables and keys. The concept of the "relational"
model was originally developed by IBM Fellow and math-
ematician Edgar (Ted) Codd in a paper from 1970. The
concept of a relational DBMS was superior to the earlier
network and hierarchical models in terms of ease of use.
The problem resided in the amount of computer horse-

(continued on page 6)

"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 6 OF 10

(continued from page 5)

power needed to make it work, a problem that was over-
come by the 1980's. As a result. new DBMS products
such as Oracle and Ingres were introduced which quickly
overtook their older competitors. There was an initial
effort to convert DBMS mainstays such as TOTAL,
ADABAS, and IDMS into relational products, but it was
too little, too late. As for IBM, they simply re-labeled
their flagship product, IMS, as a "transaction processor"
and introduced a totally new offering, DB2, which quickly
dominated the DBMS mainframe market.

Program generators continued to do well during the 1980's
but it was during this period that 4GL's (fourth generation
languages) were introduced to expedite programming.
The 4GL was a natural extension of the DBMS and pro-
vided a convenient means to develop programs to inter-
pret data in the data base.

Another development worth noting is the evolution of the
Data Dictionary into "Repositories" (also referred to as
"Encyclopedias") used to store the descriptions of all of
an organization's information resources. One of the
motivating factors behind this was IBM (for AD/Cycle)
who realized they needed some sort of cohesive bond
for the various CASE tools to interface. This is another
area pioneered by MBA who introduced their "PRIDE"-
Enterprise Engineering Methodology (EEM) to study a
business and formulate an Enterprise Information Strat-
egy, and their "PRIDE"-Data Base Engineering Method-
ology (DBEM) to develop the corporate data base, both
logically and physically. To implement these new meth-
odologies, their "PRIDE"-LOGIK Dictionary was expanded
to include business models, and data models. By doing
so, MBA renamed "PRIDE"-LOGIK the "PRIDE"-IRM (In-
formation Resource Manager) which complemented their
concept of Information Resource Management.

In terms of the MIS infrastructure, two noteworthy changes
occurred; first was the introduction of the Chief Informa-
tion Officer (CIO) as first described in the popular book,
"Information Systems Management In Practice"
(McNurlin, Sprague) in January 1986. Basically, the MIS
Director is elevated to a higher management level where,
theoretically, he/she is operating on the same level as
the Chief Operating Officer (COO), and Chief Financial
Officer (CFO) for a company. In reality, this has never
truly happened and, in many cases, the title "CIO" is
nothing more than a change in name, not in stature. The
second change is the change in job title of "Program-
mer" to "Software Engineer." Again, we are primarily
talking about semantics. True, many of the program-
mers of the 1980's studied Structured Programming, but
very few truly understood the nature of engineering as it

applies to software, most are just glorified coders. None-
theless, the "Software Engineer" title is still actively used
today. In contrast, the last of the true "Systems Ana-
lysts" slowly disappeared. Here too is evidence of the
change of focus from systems to software.

During the 1980's we also saw the emergence of MBA's
graduating from the business schools and working their
way into the corporate landscape. Although they didn't
have an immediate impact on the systems world, they
had a dramatic effect on the corporate psyche. Their
work resulted in severe corporate cutbacks, downsizing,
and outsourcing. This changed the corporate mindset to
think short-term as opposed to long-term. Following
this, companies shied away from major systems projects
(such as the MIS projects of the 1960's) and were con-
tent tackling smaller programmer assignments, thus the
term "app" was coined to describe a single program ap-
plication.

Interestingly, a "quality" movement flourished in the
1980's based on the works of W. Edwards Deming and
Joseph M. Juran who pioneered quality control principles
in the early part of the 20th century. Unfortunately, their
early work was unappreciated in America and, conse-
quently, they applied their talents to help rebuild the in-
dustrial complex of postwar Japan. It was only late in
their lives did they receive the recognition of their work
in the United States (after Japan became an economic
powerhouse). Another influential factor was the intro-
duction of the ISO 9000 standard for quality manage-
ment which was originally devised by the British and later
adopted as an international standard. Little attention
would probably have been paid to ISO 9000 if it weren't
for the fact that European businesses started to demand
compliance in order to conduct business with their com-
panies.

Nevertheless, these factors resulted in a reorientation of
American businesses to think in terms of developing
quality products which, inevitably, affected how systems
and software were produced. The real impact of the qual-
ity movement though wouldn't be felt in the systems world
until the next decade.

To summarize the 1980's from a systems development
perspective, the focus shifted away from major systems
to smaller programming assignments which were imple-
mented using newly devised CASE tools. This fostered
a "tool-oriented approach" to development whereby com-
panies spent considerably on the latest programming tools
but little on management and upfront systems work. In
other words, they bought into the vendor's claims of im-
proved programmer productivity through the use of tools.

(continued pn page 7)

"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 7 OF 10

(continued from page 6)

Unfortunately, it resulted in patchwork systems that re-
quired more time in maintenance as opposed to modify-
ing or improving systems. "Fire fighting" thereby became
the normal mode of operation in development.

1990's - REDISCOVERY

As the PC gained in stature, networking became very
important to companies so that workers could collabo-
rate and communicate on a common level. Local Area
Networks (LAN) and Wide Area Networks (WAN) seemed
to spring-up overnight. As the PC's power and capacity
grew, it became obvious that companies no longer needed
the burden of mainframes and minis. Instead, dedicated
machines were developed to control and share computer
files, hence the birth of "client/server computing" where
client computers on a network interacted with file serv-
ers. This did not completely negate the need for main-
frames and minis (which were also used as file servers),
but it did have a noticeable impact on sales. Companies
still needed mainframes to process voluminous transac-
tions and extensive number-crunching, but the trend was
to move away from big iron.

Thanks to the small size of the PC, companies no longer
required a big room to maintain the computer. Instead,
computers were kept in closets and under desks. This
became so pervasive that companies no longer knew
where their computer rooms were anymore. In a way,
the spread of computers and networks closely resembled
the nervous system of the human body.

One of the key elements that made this all possible was
the introduction of Intel's 30386 (or "386") chip which al-
lowed 32-bit processing. To effectively use this new tech-
nology, new operating systems had to be introduced, the
first being IBM's OS/2 in the late 1980's. OS/2 provided
such things as virtual memory, multitasking and
multithreading, network connectivity, crash-protection, a
new High Performance File System, and a slick object
oriented desktop. Frankly, there was nothing else out
there that could match it. Unfortunately, Microsoft bul-
lied its way past OS/2 with Windows 95 & NT. By the
end of the 1990's, OS/2 was all but forgotten by its ven-
dor, IBM. Nevertheless, it was the advent of 32-bit com-
puting that truly made client/server computing a reality.

Another major milestone during this decade was the adop-
tion of the Internet by corporate America. The Internet
actually began in the late 1960's under the Department
of Defense and was later opened to other government
and academic bodies. But it wasn't until the 1990's that
companies started to appreciate the Internet as a com-

munications and marketing medium.

The first web browser was developed by Tim Berners-
Lee in 1990 which led to the World Wide Web protocol
on the Internet. Early web browsers included Mosaic,
Netscape Navigator, and Microsoft's Internet Explorer,
among others. The beauty of the Internet was that all
computers could now access the Internet regardless of
the operating system, making it a truly universal approach
to accessing data. To write a web page, a simple tag
language was devised, Hyper Text Markup Language
(HTML), which was compiled at time of request to dis-
play the web page. HTML was nice for developing simple
static web pages (not much interaction, just simply view
the web page). Developers then invented new techniques
to make a web page more dynamic thereby allowing
people to input data and interact with files, which ulti-
mately allowed for the merchandising of products over
the Internet.

Wanting to do something more sophisticated through the
web browser, Sun Microsystems developed the Java pro-
gramming language in 1995. Java was a universal pro-
gramming language that could run under any operating
system. Their mantra was "Write once, run anywhere."
This was a radical departure from programming in the
past where it was necessary to recompile programs to
suit the peculiarities of a particular operating system.
Basically, Java made the operating system irrelevant,
much to Microsoft's chagrin. Further, Java could be used
in small pocket devices as well as in the new generation
of computers powering automobiles. This did not sit well
with Microsoft who ultimately fought the propagation of
Java.

By the 1990's the Structured Programming movement
had fizzled out. Instead, "Object Oriented Programming"
(OOP) gained in popularity. The concept of OOP was to
develop bundles of code to model real-world entities such
as customers, products, and transactions. OOP had a
profound effect on Java as well as the C++ program-
ming language.

During this time, source code generators faded from view.
True, companies were still using report writers and 4GL's,
but the emphasis turned to "Visual Programming" which
were programming workbenches with screen painting
tools to layout inputs and outputs.

The Relational DBMS movement was still in high gear,
but the use of Repositories and Data Dictionaries dropped
off noticeably. Of interest though was the introduction of
"Object Oriented Data Base Management System"
(OODBMS) technology. Like OOP, data was organized

(continued on page 8)

"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 8 OF 10

(continued from page 7)

in a DBMS according to real-world entities. Regardless,
Relational DBMS dominated the field.

Also during this decade "Data Mining" became popular
whereby companies were provided tools to harvest data
from their DBMS. This effort was basically an admission
that companies should learn to live with data redundancy
and not be concerned with developing a managed data
base environment.

Because of the radical changes in computer hardware
and software, companies became concerned with their
aging "legacy" systems as developed over the last thirty
years. To migrate to this new technology, a movement
was created called "Business Process Re-engineering"
(BPR). This was encouraging in the sense that compa-
nies were starting to think again in terms of overall busi-
ness systems as opposed to just programs. I'm not sure
I agree with the use of the term "Re-engineering" though;
this assumes that something was engineered in the first
place (which was hardly the case in these older systems).

Nonetheless, CASE-like tools were introduced to define
business processes. Suddenly, companies were talking
about such things as "work flows," "ergonomics," and
"flowcharts," topics that had not been discussed for twenty
years during the frenzy of the Structured Programming
movement. Ultimately, this all led to the rediscovery of
systems analysis; that there was more to systems than
just software. But by this time, all of the older corporate
Systems Analysts had either retired or been put out to
pasture, leaving a void in systems knowledge. Conse-
quently, the industry started to relearn the systems theory,
with a lot of missteps along the way.

Companies at this time were still struggling with devising
a suitable development environment. Most were con-
tent with just maintaining their current systems in antici-
pation of the pending Y2K (Year 2000) problem (where
date fields were to change from 19XX to 20XX which
could potentially shutdown companies). However, a few
companies began to consider how to apply more scien-
tific principles to the production of systems. Since people
were already talking about "Software Engineering," why
not apply engineering/manufacturing principles to the
development of total systems?

Back in the early 1980's, Japan's Ministry of International
Trade & Industry (MITI) coordinated a handful of Japa-
nese computer manufacturers in establishing a special
environment for producing system software, such as
operating systems and compilers. This effort came to
be known as Japanese "Software Factories" which cap-

tured the imagination of the industry. Although the ex-
periment ended with mixed results, they discovered or-
ganization and discipline could dramatically improve pro-
ductivity.

Why the experiment? Primarily because the Japanese
recognized there are fundamentally two approaches to
manufacturing anything: "one at a time" or mass pro-
duction. Both are consistent approaches that can pro-
duce a high quality product. The difference resides in
the fact that mass production offers increased volume at
lower costs. In addition, workers can be easily trained
and put into production. On the other hand, the "one at a
time" approach is slower and usually has higher costs. It
requires workers to be intimate with all aspects of the
product.

MBA took it a step further by introducing their concept of
an "Information Factory" in the early 1990's. The Infor-
mation Factory was a comprehensive development en-
vironment which implemented MBA's concept of Infor-
mation Resource Management. Basically, they drew an
analogy between developing systems to an engineering/
manufacturing facility, complete with assembly lines,
materials management and production control. These
concepts were proven effective in companies through-
out Japan, most notably Japan's BEST project, which
was sponsored by the Ministry of Finance. As back-
ground, the ministry wanted to leapfrog the west in terms
of banking systems. To do so, they assembled a team of
over 200 analysts and programmers from four of the top
trust banks in Japan; Yasuda Trust & Banking, Mitsubishi
Trust & Banking, Nippon Trust & Banking, and Chuo Trust
& Banking. By implementing MBA's concepts they were
able to deliver over 70 major integrated systems in less
than three years. Further, because they had control over
their information resources using a materials manage-
ment philosophy, the Y2K problem never surfaced.

In terms of infrastructure, development organizations
essentially went unchanged with a CIO at the top of the
pyramid and supported by Software Engineers and DBA's.
But there was one slight difference, instead of being called
an MIS or IS department, the organization was now re-
ferred to as "IT" (Information Technology). Here again,
the name hints at the direction most organizations were
taking.

Finally, the 1990's marked a change in the physical ap-
pearance of the work force. Formal suit and ties gave
way to casual Polo shirts and Docker pants. At first, ca-
sual attire was only allowed on certain days (such as Fri-
days), but it eventually became the normal mode of dress.
Unfortunately, many people abused the privilege and

(continued on page 9)

"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 9 OF 10

(continued from page 8)

dressed slovenly for work. This had a subtle but notice-
able effect on work habits, including how we build sys-
tems.

2000's - GADGETS

We are now past the halfway point in this decade and
there is nothing of substance to report in terms of com-
puter hardware, other than our machines have gotten
faster, smaller, with even more capacity. Perhaps the
biggest innovation in this regard is the wide variety of
"gadgets" that have been introduced, all of which inter-
face with the PC, including: Personal Digital Assistants
(PDA's), iPods, MP3 players, digital cameras, portable
CD/DVD players (and burners), cell phones, PS2 and
XBox game players. These devices are aimed at either
communications or entertainment, giving us greater
mobility, yet making us a bit dysfunctional socially. All of
this means the computer has become an integral part of
our lives, not just at work but at home as well.

Shortly after taking the reigns of IBM in 2003, CEO Sam
Palmisano introduced "On-Demand Computing" as the
company's thrust for the years ahead and, inevitably, it
will mark his legacy. The concept as described by
Palmisano was simple, treat computing like a public util-
ity whereby a company can draw upon IBM for comput-
ing resources as required. "On-Demand Computing"
made a nice catch-phrase and was quickly picked up by
the press, but many people were at a loss as to what it
was all about. Some of the early developments resulting
from IBM's "e-Business On Demand" research included
balancing the load on file servers, which makes sense.
But IBM is carrying the analogy perhaps too far by stress-
ing that "on demand" is the manner by which companies
should run in the future. Basically, the theory suggests
we abandon capacity planning and rely on outside ven-
dors to save the day. Further, it implies computers su-
persede the business systems they are suppose to serve.
Instead of understanding the systems which runs a busi-
ness, just throw as much computer resources as you need
to solve a problem. This is like putting the cart before
the horse.

The "on-demand" movement has evolved into "Service
Oriented Architectures" (SOA) where vendors are intro-
ducing "on-demand" applications that will take care of
such tasks as payroll, marketing, etc. through the Internet.
Again, it all sounds nice, but as far as I can see, this is
essentially no different than service bureaus like ADP
who for years provided such processing facilities. Now,
companies are being asked to swap out their internal
programs for third party products. I fail to see how this is

different than buying any other packaged solution, other
than an outsider will be taking care of your software.

The need to build software faster has reached a feverish
pitch. So much so, full-bodied development methodolo-
gies have been abandoned in favor of what is called "Ag-
ile" or "Extreme Programming" which are basically quick
and dirty methods for writing software using power pro-
gramming tools. To their credit, those touting such ap-
proaches recognize this is limited to software (not total
systems) and is not a substitute for a comprehensive
methodology. Agile/Extreme Programming is gaining
considerable attention in the press.

Next, we come to "Enterprise Architecture" which is de-
rived from a paper written by IBM's John A. Zachman
who observed that it was possible to apply architectural
principles to the development of systems. This is closely
related to consultants who extoll the virtues of capturing
"business rules" which is essentially a refinement of the
Entity Relationship (ER) Diagramming techniques popu-
larized a decade earlier using CASE tools.

As in the 1990's, concepts such as "Enterprise Architec-
ture" and "business rules" is indicative of the industry
trying to reinvent systems theory.

CONCLUSIONS

Like computer hardware, the trend over the last fifty years
in systems development is to think smaller. Developers
operate in a mad frenzy to write programs within a 90
day time frame. Interestingly, they all know that their
corporate systems are large, yet they are content to at-
tack them one program at a time. Further, there seems
to be little concern that their work be compatible with
others and that systems integration is someone else's
problem. Often you hear the excuse, "We don't have
time to do things right." Translation: "We have plenty of
time to do things wrong." Any shortcut to get through a
project is rationalized and any new tool promising im-
proved productivity is purchased. When companies at-
tempt to tackle large systems (which is becoming rare) it
is usually met with disaster. Consequently, companies
are less confident in their abilities and shy away from
large system development projects.

Corporate management is naive in terms of comprehend-
ing the value of information and have not learned how to
use it for competitive advantage (unlike their foreign com-
petitors). Further, they are oblivious to the problems in
systems development. They believe their systems are
being developed with a high degree of craftsmanship,
that they are integrated, and that they are easy to main-

(continued on page 10)

"PRIDE" SPECIAL SUBJECT BULLETIN - #66 MARCH 13, 2006 - PAGE 10 OF 10

(continued from page 9)

tain and update. Executives are shocked when they dis-
cover this is not the case.

The problems with systems today are no different than
fifty years ago:

• End-user information requirements are not satisfied.
• Systems lack documentation, making maintenance and

upgrades difficult.
• Systems lack integration.
• Data redundancy plaques corporate data bases.
• Projects are rarely delivered on time and within

budget.
• Quality suffers.
• Development personnel are constantly fighting fires.
• The backlog of improvements never seems to

diminish, but rather increases.

Although the computer provides mechanical leverage for
implementing systems, it has also fostered a tool-oriented
approach to systems development. Instead of standing
back and looking at our systems from an engineering/
manufacturing perspective, it is seemingly easier and less
painful to purchase a tool to solve a problem. This is like
taking a pill when surgery is really required. What is
needed is less tools and more management. If we built
bridges the same way we build systems in this country,
this would be a nation run by ferryboats.

The impact of the computer was so great on the systems
industry that it elevated the stature of programmers and
forced systems people to near extinction. Fortunately,
the industry has discovered that there is more to sys-
tems than just programming and, as a result, is in the
process of rediscovering basic systems theory. Some of
the ideas being put forth are truly imaginative, others are
nothing more than extensions of programming theory,
and others are just plain humbug. In other words, the
systems world is still going through growing pains much
like an adolescent who questions things and learns to
experiment.

I have been very fortunate to see a lot of this history first
hand. I have observed changes not just in terms of sys-
tems and computers, but also how the trade press has
evolved and the profession in general. It has been an
interesting ride.

Throughout all of this, there have been some very intel-
ligent people who have impacted the industry, there have
also been quite a few charlatans, but there has only been
a handful of true geniuses, one of which was Robert W.
Beamer who passed away just a couple of years ago.

Bob was the father of ASCII code, without which we
wouldn't have the computers of today, the Internet, the
billions of dollars owned by Bill Gates, or this document.

END

About the Author

Tim Bryce is the Managing Director of M. Bryce & Asso-
ciates (MBA) of Palm Harbor, Florida and has 30 years
of experience in the field of Information Resource Man-
agement (IRM). He is available for training and consult-
ing on an international basis.

"PRIDE" Special Subject Bulletins can be found at:

http://www.phmainstreet.com/mba/mbass.htm

They are also available through the "PRIDE Methodolo-
gies for IRM Discussion Group" at:

http://groups.yahoo.com/group/mbapride/

You are welcome to join this group if you are so inclined.

The "Management Visions" Internet audio broadcast is
available at:

http://www.phmainstreet.com/mba/mv.htm

Also, be sure to read Tim’s Blog at:

http://blogs.ittoolbox.com/pm/irm/

"PRIDE" is the registered trademark of M. Bryce & Asso-
ciates (MBA) and can be found on the Internet at:

http://www.phmainstreet.com/mba/pride/

Copyright © 2006 MBA. All rights reserved.

