
"PRIDE" SPECIAL SUBJECT BULLETIN - #92 SEPTEMBER 11, 2006 - PAGE 1 OF 6

TITLE: “HIRING THE RIGHT PROGRAMMER”

by Tim Bryce
Managing Director

M. Bryce & Associates (MBA)
P.O. Box 1637

Palm Harbor, FL 34682-1637
United States

Tel: 727/786-4567
E-Mail: timb001@phmainstreet.com

Yahoo! IM: littleleaguerng
WWW: http://www.phmainstreet.com/mba/

Since 1971: "Software for the finest computer - the Mind"

"A resume is either an accurate description of a
person's capabilities or demonstrates how

well someone can write fiction."
- Bryce's Law

INTRODUCTION

Finding a good programmer can be a difficult task. Of-
ten times you will come across a candidate who inter-
views well and appears to have impressive credentials,
yet you discover too late that he is simply not as profi-
cient as you thought he was. Now you have someone
you will either have to eventually eliminate or invest con-
siderable money in to bring him up to speed (or both).
What to do? True, you should probably improve your
interviewing skills and learn to read between the lines of
a resume, but there are a few other things you can do.

Basically, there are three things you, as a manager, want
to know about a new employee; his background (job his-
tory), his knowledge, and how well he will adapt to your
corporate culture. His background should be revealed
by the interview, his resume, and any references he might
have, but determining his knowledge and adaptability to
the corporate culture is a little trickier.

CORPORATE CULTURE

I have discussed the importance of corporate culture
many times in the past; in particular, see:

No. 28-"Understanding Corporate Culture" - June 13, 2005
http://www.phmainstreet.com/mba/ss050613.pdf

Basically, in order for any employee to properly function
and succeed, it is imperative that he is able to adapt to
the corporate culture. If not, the culture will reject him
and the employee will become an outcast. Before we
can evaluate the employee's adaptability though, we
should understand our own culture first. For example:

• What are the corporate ethics? Do you value honesty
and integrity or are you a politically charged
environment with considerable backbiting, finger
pointing, piracy, and other questionable office tactics?

• Do you commonly seek "quick and dirty" solutions or
do you operate more as skilled craftsmen?

• How rigid are your operating policies, e.g., dress codes,
hours of operations, conduct, etc.?

• What are interpersonal relations/communications like
in your office; e.g., speech, form of address, decorum,
cooperation, etc.?

• What form of management do you practice; dictatorial
with considerable supervision of do you empower your
employees to make decisions?

Ascertaining a candidate's adaptability will be primarily
based on your observations of the candidate during the
interview.

SKILLS & PROFICIENCIES

A candidate's resume will say one thing, but you may be
looking for something else. As part of the interview, you
may want to ask the candidate to complete a Skills As-
sessment which lists the skills pertaining to your area
and his level of competency (proficiency). The following
is a sample Skills Assessment we have used for gather-
ing background information on programmer candidates.
It is certainly not universal and should be tailored to your
organization's needs. Regardless, after the candidate
has completed the Skills Assessment, it should be com-
pared against his resume in order to look for discrepan-
cies.

SKILLS ASSESSMENT

Please indicate your level of expertise in the following
areas:

1. Please circle your proficiency with the following
PROGRAMMING LANGUAGES:

ASSEMBLER: Expert - Competent - Novice - Don't Know

BASIC: Expert - Competent - Novice - Don't Know

C++: Expert - Competent - Novice - Don't Know

COBOL: Expert - Competent - Novice - Don't Know
(continued on page 2)

HP_Administrator
Copyright © MBA 2006. All rights reserved.

"PRIDE" SPECIAL SUBJECT BULLETIN - #92 SEPTEMBER 11, 2006 - PAGE 2 OF 6

(continued from page 1)

JAVA: Expert - Competent - Novice - Don't Know

SQL: Expert - Competent - Novice - Don't Know

(allow the candidate to add other languages not listed)

2. Please circle your proficiency with the following
COMPUTER CONTROL & TAG LANGUAGES:

DOS BAT: Expert - Competent - Novice - Don't Know

HLP: Expert - Competent - Novice - Don't Know

HTML: Expert - Competent - Novice - Don't Know

IBM JCL: Expert - Competent - Novice - Don't Know

REXX: Expert - Competent - Novice - Don't Know

PostScript: Expert - Competent - Novice - Don't Know

XML: Expert - Competent - Novice - Don't Know

(allow the candidate to add other languages not listed)

3. Please circle your proficiency with the following
COMPUTER OPERATING SYSTEMS:

DOS: Expert - Competent - Novice - Don't Know

Linux: Expert - Competent - Novice - Don't Know

MVS: Expert - Competent - Novice - Don't Know

OS/2: Expert - Competent - Novice - Don't Know

VMS: Expert - Competent - Novice - Don't Know

Windows 2000: Expert - Competent - Novice - Don't
Know

Windows XP: Expert - Competent - Novice - Don't Know

UNIX: Expert - Competent - Novice - Don't Know

(allow the candidate to add other operating systems not
listed)

4. Please circle your proficiency with the following
types of DBMS ARCHITECTURES:

HIERARCHICAL: Expert-Competent-Novice-Don't Know

CODASYL NETWORK: Expert - Competent - Novice -
Don't Know

RELATIONAL: Expert - Competent - Novice - Don't Know

OBJECT ORIENTED: Expert - Competent - Novice -
Don't Know

5. Please circle your proficiency with Double Byte
Character Set (DBCS) technology:

DBCS: Expert - Competent - Novice - Don't Know

6. Please circle your proficiency with the following
TOOLS:

Establish a list of in-house tools used; some suggestions:

4th Generation Languages
CASE Tools
Data Dictionaries/Repositories
DBMS Packages
GUI/Screen Design tools
Program Generators
Programmer Workbenches
Project Management Tools
Prototyping Aids
Report Writers
Test/Debugging Aids
TP Monitors (ISPF, ROSCOE, TSO)
Visual Programming Tools
Web Design Tools
(allow the candidate to add other tools not listed)

KNOWLEDGE

Now, more pointedly, you need to know if the candidate
truly knows how to program or not. College degrees,
certificates, and participation in trade groups are impor-
tant, but you need to convince yourself the person has
substance as opposed to facade. Samples of work are
useful, but then again, are you sure the person actually
produced it? We have always found it useful to provide
a simple test for the person to verify he knows what he is
talking about. He can either substantiate his knowledge
through a test or he cannot.

The following is a sample questionnaire we used over
the years to evaluate a programming candidate's cred-
ibility. It was designed to evaluate both general and spe-
cific areas of concern for us. Again, it is by no means a
universally applicable test but, instead, gives you an idea
of how to construct your own questionnaire. Most of it

(continued on page 3)

"PRIDE" SPECIAL SUBJECT BULLETIN - #92 SEPTEMBER 11, 2006 - PAGE 3 OF 6

(continued from page 2)

requires freeform answers and takes about thirty min-
utes to complete, but we have found it to be time well
spent.

SOFTWARE ENGINEERING QUESTIONNAIRE

NAME: ______________________________________

DATE: / /

TO APPLICANT:

The purpose of this questionnaire is to review your Soft-
ware Engineering knowledge. Please be brief and con-
cise in your answers.

1. What is the normal sequence of tasks you follow
to develop a PROGRAM?

This freeform question is aimed at reviewing the
respondent's approach to problem solving and design.

TYPICAL RESPONSE:
Analyze, Design, Program, Test/Debug, Review

2. What program design techniques are you famil-
iar with or use?

This freeform question is used to determine the types of
techniques the programmer is familiar with.

TYPICAL RESPONSE:
Structured Programming
Object Oriented Programming
(Graphics techniques)

3. What are the differences between Structured Pro-
gramming and Object Oriented Programming? What
are the benefits of each?

TYPICAL RESPONSE:
Structured Programming represents a "top-down" modu-
lar approach for dividing software into smaller, more
manageable, building blocks (to divide and conquer). This
is useful for splitting up complex programs, and for main-
tenance.

Object Oriented Programming breaks programs into self-
sufficient software that can be easily combined with other
objects. An object can represent just about anything in
real life. Both the data structure and the processing is
bound together within the object.

4. What are the normal steps for testing a program?

This freeform question is intended to review the person's
testing techniques.

TYPICAL RESPONSE:

A. The major modules within the program should be
tested individually using only valid data, e.g., no error
conditions should be tested.

B. Independent error conditions should be tested one at
a time (single errors).

C. Error conditions should be tested together to see
whether one error condition has an effect upon another
(contingencies).

D. Conditions that depend on volume can be tested.

5. On a separate piece of paper, draw a structure
chart for a program performing the following func-
tions. (The purpose is to review your structured
design knowledge). To avoid details, limit the struc-
ture chart to only 3 or 4 levels.

Basically, the program performs simplified TIME RE-
PORTING functions for a company employee interac-
tively. It accesses two files: EMPLOYEE FILE and TIME
RECORD FILE.

The EMPLOYEE FILE contains records which include
EMPLOYEE NO., EMPLOYEE NAME, a list of CUR-
RENT ASSIGNMENT CODES and NAMES, and NUM-
BER OF THE TOTAL CURRENT ASSIGNMENTS.

The TIME RECORD FILE contains records which include
EMPLOYEE NO., DATE, ASSIGNMENT CODE, AC-
TUAL HOURS FOR THE ASSIGNMENT, ESTIMATED
HOURS REMAINING TO COMPLETE THE ASSIGN-
MENT.

The program first requests the user to enter his EM-
PLOYEE NUMBER from the keyboard. Then it displays
EMPLOYEE NUMBER, EMPLOYEE NAME, CURRENT
DATE, and a list of CURRENT ASSIGNMENTS. For
each current assignment, it should display the ASSIGN-
MENT CODE, ASSIGNMENT NAME, a blank field for
ACTUAL HOURS, and ESTIMATE REMAINING for the
assignment (if there is no ESTIMATE REMAINING re-
ported yet, a blank field is displayed).

(continued on page 4)

"PRIDE" SPECIAL SUBJECT BULLETIN - #92 SEPTEMBER 11, 2006 - PAGE 4 OF 6

(continued from page 3)

The user can only report for one assignment at a time
(either for ACTUAL HOURS or ESTIMATE REMAINING
but not for both). The program redisplays the screen
and updates the hours on the screen and updates the
hours on the screen every time the user reports the hours
and hits ENTER.

A time record is generated when the user reports hours
against an assignment. If user reports 0 hours for ESTI-
MATE REMAINING for an assignment, the EMPLOYEE
RECORD must be updated in EMPLOYEE FILE.

The program terminates when the user types EXIT and
hits ENTER.

SAMPLE ANSWER:

DATA STRUCTURES

In the following questions, use the 'C' language to pro-
duce an example. If you do not know 'C', use COBOL or
another language you are more familiar with:

6. Code an example describing the data structure of
a multidimensional TABLE (or ARRAY) and describe
how to access its elements.

C EXAMPLE:

int. Table [10] [10]; /* 2 dimensional array */

 for (i=0; ; <10; ++i)
 for (j=0; ; <10; ++i)
 printf("%d/n",table[i][j]);

The above example will print out all data on a separate
line. The array can be 3, 4, 5 dimensions. Access to
individual elements can also be done by
printf("%d\n",table[5][5];

COBOL EXAMPLE:

DATA:

01 THREE-DIMEN-TABLE.
 05 TWO-DIMEN-TABLE OCCURS 100 TIMES
 INDEX BY TBL-INDX-1.
 10 ONE-DIMEN-TABLE OCCURS 100 TIMES
 INDEX BY TBL-INDX-2.
 15 TABLE-ELEMT OCCURS 100 TIMES
 INDEX BY TBL-INDX-3
 PIC X(8).
PROCEDURE:

SET TBL-INDX-1 TO 1.
SET TBL-INDX-2 TO 1.
SET TBL-INDX-3 TO 1.

MOVE THREE-DIMEN-TABLE (TBL-INDX-1 TBL-INDX-
2 TBL-INDX-3)
 TO FIRST-TBL-ELEMT.

7. STACKS:

A. Define a STACK:

TYPICAL RESPONSE:
An ordered collection of items into which new items may
be inserted and from which items may be deleted at one
end, called the "top" of the stack.

(continued on page 5)

"PRIDE" SPECIAL SUBJECT BULLETIN - #92 SEPTEMBER 11, 2006 - PAGE 5 OF 6

(continued from page 4)

B. Code an example of its data structure:

C EXAMPLE:

struct stack (
 int num;
 struct stack *next);
top=push (num,top) /* returns address of last record */

COBOL EXAMPLE:

01 STACK.
 05 STACK-TOP PIC 9(3).
 05 STACK-ITEM OCCURS 100 TIMES PIC X(8).

8. What is a RECURSIVE function?

TYPICAL RESPONSE:
A function (or procedure) called or performed directly or
indirectly by itself.

A. Can you perform a recursive call in COBOL?

(NO)

9. QUEUE:

A. Define a QUEUE:

An ordered collection of items from which many items
may be deleted at one end (called the "front" of the queue)
and into which items may be inserted at the other end
(called the "rear" of the queue).

B. Code an example of its data structure:

C EXAMPLE:

struct queue (
 int num; struct queue * next;)
top = getfirst (top)
last = getlast (num,last)

COBOL EXAMPLE:

01 QUEUE.
 05 QUEUE-FRONT PIC 9(3).
 05 QUEUE-END PIC 9(3).
 05 QUEUE-ITEM OCCURS 100 TIMES PIC X(8).

10. POINTERS & LINKED LISTS:

A. What is a POINTER?

TYPICAL RESPONSE:
A pointer is a data item whose content is the address of
another data item.

B. Define a LINKED LIST:

TYPICAL RESPONSE:
A collection of items where each item contained within
itself the address of the next item.

C. Code an example of its data structure and de-
scribe the logic to create a LINKED LIST:

C EXAMPLE:

struct |node (
 int main;
 struct |mode *next;
)

Linked lists are sequentially accessed but they may not
be sequential in memory. In above example, main has
integer data while next would be set to point to the next
link in the list.

COBOL EXAMPLE:

DATA:

01 POINTER PIC 9(3).
*
01 LINK-LIST.
 05 LINK-LIST-ITEM OCCURS 100 TIMES.
 10 ITEM-INFO PIC X(8).
 10 NEXT-ITEM PIC 9(3).

PROCEDURE:

 MOVE ZERO TO POINTER
 PERFORM 100-CREAT-LINKED-LIST UNTIL
(POINTER = 100).
*
100-CREAT-LINKED-LIST.
*
 ADD 1 TO POINTER.
 COMPUTE NEXT-ITEM (POINTER) = POINTER + 1.
*
105-DONE-LINKED-LIST.

(continued on page 6)

"PRIDE" SPECIAL SUBJECT BULLETIN - #92 SEPTEMBER 11, 2006 - PAGE 6 OF 6

(continued from page 5)

11. Define a BINARY TREE:

TYPICAL RESPONSE:
A finite set of elements that is either empty or contains a
single element called the "root" of the tree and whose
remaining elements are partitioned into two disjointed
subsets, each of which is a binary tree.

12. What is a GRAPH?

TYPICAL RESPONSE:
Consists of a set of nodes (or vertices) and a set or arcs.
Each arc in a graph is specified by a pair of nodes.

13. HASHING ALGORITHMS:

A. Define the function of a HASHING ALGORITHM:

TYPICAL RESPONSE:
To transform a key into a table index.

B. What would a good HASHING ALGORITHM
achieve?

TYPICAL RESPONSE:
Produce as few hashing clashes (collisions) as possible,
e.g., it should spread the key uniformly over the possible
table indices.

OPERATING SYSTEM CONCEPTS

14. Explain the following concepts:

A. VIRTUAL MEMORY

TYPICAL RESPONSE:
A computer operating system which allows users to have
larger address space than its actual memory space.
Usually disk storage is used for the extension.

B. STATIC LINKING and DYNAMIC LINKING

TYPICAL RESPONSE:
All external references in a program are resolved at link
time.

All external references in a program are resolved at ex-
ecution time.

C. DEADLOCK

TYPICAL RESPONSE:

When several processes are executed concurrently, two
or more processes are permanently blocked waiting for
resources.

CONCLUSION

The examples used in this bulletin are applicable for pro-
grammers only. However, you may want to devise com-
parable Skills Assessments and tests for Systems Ana-
lysts, Project Managers, and Data Base personnel.

Testing is an invaluable means for determining if candi-
date qualifications as stated in resumes are legitimate.
Basically, it helps differentiate between facade and sub-
stance. Some Human Resource departments frown on
such testing, others welcome it. For programmers, I con-
sider it vital. Frankly, you have better things to do than
waste time on someone who is not truly qualified for the
position. Remember, "An ounce of prevention is worth a
pound of cure."

END

About the Author

Tim Bryce is the Managing Director of M. Bryce & Asso-
ciates (MBA) of Palm Harbor, Florida and has 30 years
of experience in the field of Information Resource Man-
agement (IRM). He is available for training and consult-
ing on an international basis.

"PRIDE" Special Subject Bulletins can be found at:
http://www.phmainstreet.com/mba/mbass.htm

They are also available through the "PRIDE Methodolo-
gies for IRM Discussion Group" at:

http://groups.yahoo.com/group/mbapride/

You are welcome to join this group if you are so inclined.

The "Management Visions" Internet audio broadcast is
available at:

http://www.phmainstreet.com/mba/mv.htm

Also, be sure to read Tim’s Blog at:
http://blogs.ittoolbox.com/pm/irm/

"PRIDE" is the registered trademark of M. Bryce & Asso-
ciates (MBA) and can be found on the Internet at:

http://www.phmainstreet.com/mba/pride/

Copyright © MBA 2006. All rights reserved.

